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Abstract

Formulations for the upper and lower bound theorems of plasticity are presented for fissured soil and jointed
rock. The methods ignore elastic deformations and are based on the assumption that the fissured soil or rock mass
can be treated as an anisotropic, rigid-plastic continuum. In the upper bound formulation, velocity discontinuity
multipliers are introduced to deal with the discontinuities in the velocity field. For both the upper and lower bound
formulations, linearized failure surfaces for the fissured materials are developed. The illustrative examples indicate
that the new procedures are very efficient even when a quite coarse mesh is used to represent the mass of failing
material, and that the ‘exact’ failure loads are always bracketed by the upper bound and lower bound calculations.
Moreover, by increasing the number of planes in the failure surface or/and refining the meshes, the accuracy of the
bounds is raised. © 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

Natural soil and rock deposits often have a history which involves a wide range of stress states. This
can include overstressing and also tensile failure of such geo-materials and so may result in extensive
fissuring or jointing of the medium. Such defects occur as physical discontinuities within the matrix
material, and hence, the mechanical behaviour of these rock and soil masses is governed not only by the
intact matrix material but also by the characteristics of the discontinuities. The presence of defects in the
material often gives rise to numerical difficulties during engineering analysis of these materials. However,
if the fissures in each set are reasonably constant in orientation and closely spaced, then the overall mass
can be treated as an anisotropic continuum for the purpose of mechanical analysis. The properties of
this composite material are determined by the defect strength, the strength of the intact matrix, and the
orientations of the defect sets. Examples of the engineering analysis of fissured materials using this
approach appear in papers by Davis (1980), Alehossein et al. (1992), Lav et al. (1995) and Zheng and
Booker (1997). All these studies reached similar conclusions, i.e., that the presence of weak fissures and
joints significantly reduces the bearing capacity of shallow foundations.
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Fig. 1. Footing on a fissured material.

Limit analysis techniques, such as the upper and lower bound methods of the theory of plasticity,
have proved to be the most effective methods for predicting plastic collapse in many areas of soil and
rock mechanics. They have been used previously to solve complex problems that involve anisotropy and
non-homogeneity of soil or rock. As will be demonstrated, they also provide a powerful approach for
studying the behaviour of fissured materials. For example, Chen (1975) applied limit analysis to the
bearing capacity of footings on a single layer and two-layer soils, exhibiting both anisotropy and non-
homogeneity. His analysis was based on the assumption of a circular failure surface. Reddy and
Venkatakrishna (1982), by adopting a Prandtl-type failure mechanism, applied the upper bound theorem
to obtain the bearing capacity of a strip footing on cohesive—frictional soils exhibiting anisotropy and
non-homogeneity in cohesion. Sloan, (1988) presented a technique, which computes a statically
admissible stress field via finite elements and linear programming, for computing lower bound limit
loads under conditions of plane strain. His results show that the solution is a strict lower bound on the
true collapse load. By using the upper bound theory, Michalowski (1993) found that the limit analysis
method is a convenient method for calculating the bearing capacity in cases where the soil strength
increases with depth. Sloan and Kleeman (1995) proposed a quite general upper bound method which
permits a large number of discontinuities in the velocity field and can be applied to both homogeneous
and non-homogeneous materials whose strength is cohesive—frictional, or purely cohesive. Yu and Sloan
(1997) have applied the limit theorems to reinforced soils and found that a major advantage of these
methods is that the complex loading, geometry and soil behaviour can all be dealt with in a
straightforward manner.

The purpose of this paper is to use the limit analysis method to develop a general numerical approach
for finding the lower bound and upper bound solutions to the bearing capacity of a smooth or rough
rigid strip footing resting on fissured soil or rock (Fig. 1). To achieve this objective, the formulations
developed for both lower and upper bound solutions assume that the failure criterion for a fissured
material can be linearized. Elastic deformations are ignored and it is assumed that a fissured material
can be treated as an anisotropic continuum. A number of applications are given to illustrate that the
formulations are computationally efficient and give good estimates of the true limit loads, even with a
relatively coarse computational grid. Detailed comparisons with results obtained from the method of
characteristics (Zheng and Booker, 1997) are also presented. The illustrative examples indicate that by
increasing the accuracy of the linearized failure criterion and by refining the mesh sizes, the numerically
obtained upper and lower bounds more closely bracket the exact collapse load.

2. Statement of the problem

The development of failure criteria for materials with regular sets of fissures has been presented
previously by a number of authors, e.g. Davis (1980), Zheng and Booker (1997). For completeness, the
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formulation of the failure surface for a cohesive—frictional material with either a single set of fissures or
two sets of fissures is presented in Appendix B.

Consider a plastic body occupying a volume V' with a surface S. Suppose that a portion of the surface
S, is loaded while the remainder of the surface is subjected to zero tractions or velocities, and hence
ZEero power.

For two-dimensional problems, the bound theorems allow determination of upper and lower bounds
of the quantity fSL(T vu+ Tyv) dS, which is the power input to S;. (T, 7)) are the components of the
traction and (u, v) are the velocity components along S;. The power input may be used to calculate the
upper and lower bounds in a number of cases, as indicated below.

If S is a straight portion of the boundary, corresponding to the interface with a rigid footing that is
subjected to a normal velocity IT and zero tangential displacement, then it is clear that

J (Tvu + TVU) dS =1I1P,,
S

where P,, is the normal force on the rough rigid footing. Similarly, if a straight portion of the boundary
is subjected to a normal velocity I1, but is shear free, then

L (Tuu+ Ty0) dS = TIP,,
L

where Py, is the normal force on the smooth rigid footing.
The zero power condition on the remainder of the boundary includes many possibilities and some of
these are:

1. Traction free, i.e. T, =0, T, =0,
2. Zero velocity, i.e. u =0,v =0.

The boundary S—S; can be made up of a combination of these conditions.

3. Formulation of the upper bound problem

The upper bound theorem is a powerful tool for stability analysis and has been widely used in many
areas of goetechnical design. General formulations of the upper bound theorem use finite elements and
linear programming (e.g. Sloan and Kleeman, 1995). The conditions required to establish an upper
bound solution to the collapse load are essentially as follows:

The loads, determined by equating the external work to the internal dissipation in an assumed
velocity field that satisfies (a) the velocity boundary conditions and (b) the strain and velocity
compatibility conditions, are not less than the actual collapse load.

Thus, the upper bound technique considers only velocity, failure modes and energy dissipation. The
stress distribution need not be in equilibrium, and is only defined in the deforming regions of the body.
Hence, the constraints in the problem will be imposed on velocities by the plastic flow rule, velocity
discontinuities and velocity boundary conditions. Once the solution to the upper bound linear
programming problem has been found, a rigorous upper bound on the exact collapse load is found by
equating the work of the external forces to the dissipation of internal power. It has been demonstrated
in the limit theorems of plasticity theory that the stress and velocity fields are unique and complete if
the material follows an associated flow rule. Accordingly, it is assumed that the material obeys an
associated flow rule in this paper.
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Fig. 2. Mesh of linear triangles for limit analysis.

The formulation in this section generalises the active set upper bound formulation of Sloan and
Kleeman (1995) to permit a large number of discontinuities in the velocity field. Their method is based
on a linear three-noded triangle with six unknown nodal velocities, a fixed number of unknown plastic
multipliers and a fixed number of unknowns to describe the tangential velocity jumps along the length
of a discontinuity. In the formulation presented here, it is also assumed that a velocity discontinuity
may occur at any edge shared by a pair of adjacent triangles, and each discontinuity is typically defined
by four nodes. A new feature in this formulation is the introduction of the velocity discontinuity
multiplier, which plays a similar role to the tangential velocity jump (Sloan and Kleeman, 1995). Along
a discontinuity, there are four unknown velocity discontinuity multipliers.

Assume that the rigid plastic region can be divided into triangular elements, as shown in Fig. 2, and
that within an element there are six velocity components (Fig. 3) which are assumed to vary linearly
according to

3
u= E Niu;,
=1

3
L= ZNiUiy (1)
i=1

»v

(“I: Vl)

X u

Fig. 3. Triangular element for upper bound limit analysis.
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where ©; and v; are the nodal velocities in the x- and y-directions, respectively, and N; are linear shape
functions, as defined in eqns (A1) of Appendix A.

3.1. Constraints for plastic flow in a continuum
For plane strain deformation of a rigid plastic material, the failure condition can be defined as:
/i (Gx.xa Oyys Oxy) = 0 2

in which (0., 0y, 0x,) are the planar stress components and the flow rule takes the following form:

af du
Exx =4 =——

00 x ax
i
Y= 56, ay

. of du v

) , = = — _— - 3
P <8y + 8x> ®)

where 1 >0 is a plastic multiplier and u and v are the velocity components defined previously.

In order to formulate the problem as a linear programming problem, the failure surface has to be
given by a linear function or linear functions. Following the discussion given in Appendix B for a
material with vertical and/or horizontal fissures, the linearized failure functions take the following form:

fi=ANow+ AVoy + 2400, -G =0, j=1,..., 7, (4)

where 4Y), AY), 49, GV (j=1,..., J,) are defined in eqns (BY), (B10) and (B12). Eqns (3) impose three
equality constraints on the nodal velocities and plastic multipliers for each element, so that the plastic

strain rates are given by

. u . of I8 Lo
Exx = — u:/l f :Z/L,j fl :Z;\’JA,(VI,?C’
=1 j=1

ax 00 ¢y 00 yy

v of Lo <
»y 9 d - Z A 3—] N jA“E{})"

y Oyy S EEC A=
(v o\ af_ii 3f; _2XJ:;A0> (&)
Py = ax  dy) Nao'xy B = jao'x,v B j=1 e

where ij is the non-negative plastic multiplier associated with the j-th plane of the failure surface.
Differentiating eqns (1) with respect to the coordinates and substituting into (5), the flow rule
constraints for each triangle may be written as
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oN; S 0) Z aN; Z 5 40) 2 : INi 2 : IN; 2 : 74D
: : ax Ui + 2 1: /I/Ax). = 0’ ay Vi + — )“./Ayy = O’ ax Vi + W“[ + 2 - /L’iAX)? = 0)
J= J= J=

i=1 i=1 i=1

=

where 2_,20 (G=1,...,J). By using the shape functions given in (Al), the matrix form of these flow
rule constraints, which must be satisfied by every triangle in the mesh, is given by

A x] —Apx; =0 (6)
where
uj
U]
y3 0 yy 0 yp O 0
e _ € —
API_ZA 0 x3» 0 xi3 0 x|, x 0 |’
X32 V23 X13 Y31 X211 )12
u
U3
50
1 j J
AD 40 AV :
) j ) 2 (o)
A;Z = Ayy oo A(L{))' e Ayy N x; = )\‘j
. )
240 .. 249 ... 249 :
4]

The superscript e denotes the element e in the mesh and there are J inequality constraints on the plastic
multipliers of the form x4 >0.

3.2. Constraints for velocity discontinuities

If the discontinuity is inclined to the x-axis by an angle 0, then a coordinate transformation is
required. Let

s cosf sinf |[x
<t>_[—sin0 cos@i|<y)' @)
then
s\ | cos sin0 |(u
<u,>_|:—sin9 cos 9](0) ()
Hence, the discontinuous constraint equtions (C5) presented in Appendix C can be rewritten as

—sin 0Au + cos 0Av = —(k| + K,) tan ¢,

cos OAu + sin OAv = — (k| — k7). )

where Au and Av are velocity jumps in the x- and y-directions, respectively. These jumps are illustrated
in Fig. 4.
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Fig. 4. Velocity discontinuity.

For each discontinuity, therefore, the matrix form of these discontinuity constraints is given by four
equations with four unknowns, i.e.

Ay} — Agsxy =0, (10)
where
[ —sin® cos® sinf —cosf 0 0 0 0
Ak | cos 0 sinf —cosO —sinb 0 0 0 0
dl = 0 0 0 0 —sin@® cosO sinf —cosO |’
0 0 0 0 cosf sinf —cosfO —sin 0

[tan¢ tangp O 0

U S S 0
a3 0 0 tang¢ tang¢ |’
L0 0 1 -1
k T
x| = (u1 D1 Uy DLy U3 L3 U4 D4) N

xk = ( J02F L2 a4 )T>o
3 K] Ky K5 K5 =0,
and the superscript k is the index of the discontinuity.
3.3. Constraints for velocity boundary conditions
To be kinematically admissible, the computed velocity field must satisfy the prescribed boundary

conditions. Consider a segment of the boundary with the end nodes i; and i,. If the segment is inclined
at an angle 6 to the x-axis, then by using the coordinate transformation (8) it is found that

cos@ sin0 |(u\
—sin0 cos O |\v; ]

CI
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where u and v are prescribed nodal tangential and normal velocity components, respectively and node i
denotes a point on the straight line iji;. Thus, these constraints may be expressed in the following
matrix form:

Ajxy =D, (11)

where
;| cos@ sinf i u P
Ay = [—sin@ cos (9}’ = <ui)’ b _<

3.4. Objective function

Plastic flow may occur in both the continuum and the velocity discontinuities. The total power
dissipated by these means constitutes the objective function, which can be expressed as a function of
plastic multipliers and the velocity discontinuity multipliers.

3.5. Power dissipation in a plastic region

Within each triangle, the power dissipated by the plastic stresses is given by

J
P = J (Orrkx + Oy + 07 ) dA =Y «;A,.J G da,
e j:l A(‘

where A4¢ denote the area of the triangle and G are defined in Appendix B. Therefore, the power
dissipated by the plastic stresses may be evaluated by

e e T (4
P =(cf) x5 (12)
where
J G(l) dA4 - © _
A¢ 7
J G(Z) dA ,)')(2(’)
ci — A s x(i =
' L@
J G(./) dA4 L vy _
| J4e _
and x5 >0.

3.6. Power dissipation along a velocity discontinuity

From the discussion in Appendix C, the power dissipated by plastic shearing along each velocity
discontinuity k is given by an integral of the form



X. Zheng et al. | International Journal of Solids and Structures 37 (2000) 1211-1243

P’;,:Jc(fcl + i) dl
!

1219

where / denotes the length of the discontinuity and ¢ is the cohesion of the matrix material. Therefore,

the power dissipated by the discontinuity may be evaluated by:

Pk — (ck)T
d — d

where

)
x>
Il
|

3.7. External work due to the weight of soil

The external work expended in displacing the weight of soil within an element e is given by

W= J )(yxu + yyv) d4 =

k

X3

cdl

cd/

cd/

cd/

(Sl

- (1,2)F
Ky

&
i (13,4)

- (3.4)
)

1
3

SR
(1)

1
VA (uy +uy +uz) + gv},Ae(m + vy +v3)

(13)

where 7, and y, are components of the unit weight of the deposit in the x- and y-directions, respectively,
and where u;, v; (i =1, 2, 3) are velocity components at the nodal points of the element, and 4° denotes

the area of this element, viz

W‘ = (c
where

A(’

C; = ?

(—
X, =

uj
U1
75}
)
u3
U3

(14)

Equating the external work to the power dissipated provides the quantity Q to be minimised by an
appropriate optimisation programme. Therefore, the linear programming problem corresponding to the
upper bound is defined by

Minimise

OQ=P.+P;,— Wy
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Subject to Apix; —Apx; =0
Agx —Apx3 =0
Abxl =b
X2 20
x3=0
where

E
Ap = Z ;2
e=1
D
Aa =) Ay
=1
D
Ap = ZA§3

and
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_}(1) _
1 )
;'(1) Ky
Y2 . (1’2)1
K3
up K(13,4)
Ul A (1) 1
uz Ay ;'c(23’4)
1)) .
X = , X2 = : , X3 =
L (E - (1,2)°
y )N(l ) K
N D
. . (1,2)
R ;éE) K2
D
;-C(13,4)
. (3.4)°
) 2
Ay

E is the number of elements, D is the number of discontinuities, N is the number of nodes and I is the
number of segments along the boundary.

4. Formulation of the lower bound problem

The lower bound theorem of the classical plasticity theory considers only equilibrium and failure and
gives no consideration to kinematics. It is a powerful tool for analysing the stability of problems in soil
mechanics. The theory assumes a perfectly plastic soil model with an associated flow rule and states that
any statically admissible stress field will furnish a lower bound estimate of the true limit load. The
conditions required to establish a lower bound solution to the collapse load are essentially as follows:

The loads, determined from a distribution of stress alone, that satisfy (a) the equilibrium equations,
(b) the stress boundary conditions and (¢) nowhere violates the yield criterion, are not greater than
the actual collapse load.

Similar to the formulation of the upper bound problem, the formulation of the lower bound problem
also permits discontinuities in the stress field. In the present formulation, triangular elements are used to
model the stress field under conditions of plane strain (Fig. 2). The constraints in the problem will be
imposed on the stresses by the equilibrium equations, the stress boundary conditions, the discontinuity
equilibrium equations and the failure functions.

Assume that the variation of the stress throughout each element is linear and each node is associated
with three stress components (shown in Fig. 5) which can be expressed as:

3
i
Oxx = E Nio-xxa
i=1
3
i
Oyy = E Nl‘O'yy,
i=1

3
oy =y Nio,, (15)
i=1
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1

(Gxxl’ nyl’ GX)'l)

Fig. 5. Triangular element for lower bound limit analysis.

where ¢’

- afx}, (i=1,2,3) are nodal stress components and XN; are linear shape functions
(A1).

yy°

4.1. Constraints for element equilibrium

In order to satisfy equilibrium, the stresses throughout each triangular element must obey the stress
equilibrium equations:
00y 00y

ax ay - yxv

0oy, 0d0y,
0x ay

=7 (16)

The stress must also satisfy the boundary conditions
no=gq (17)

where 7, and 7, denote the components of body force in the x- and y-directions, respectively, and where
n is the outward unit normal vector to a surface element and ¢ is a surface traction vector.

By using the eqn (15) and the shape functions (A1), the discrete equilibrium equations expressed in
terms of the nodal stresses have the form of

A¢ x° =b° 18
eq eq
where

g = L(ys 0 xmoyn 0 xioyn 0 X
424\ 0 x3 ya3 0 x;3 yu 0 xp oy )’

> T
e __ € € € € € 4 € € €
X = (O-xxl O-yyl nyl Oxx2 ayyZ O-xy2 Ox3 ny3 O-xy3 ) >

e __ yx
P = (/)

and where A4° is the area of the element e.
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4.2. Constraints for boundary conditions

Following Sloan (1988), a special boundary condition relevant to many geotechnical engineering
problems is used, i.c., the stress boundary condition (17) takes the following values

0, = ¢ = constant,

T = t = constant.

Assuming that the edge i of a triangle ¢ has endpoints 1 and 2, and ¢, # (k =1, 2) are the normal
stresses and shear stresses specified at the nodes 1 and 2, respectively (shown in Fig. 6). Since each of
the stress components oy, 0,,, 6, varies linearly within each element, i.e., they vary linearly along the
edge i, then it is possible to cater for a slightly more general type of boundary condition of the form

n
0, =q1+(q— C]l)z,

N

=1 +(zz—zl)%,

where n € [0, 1] denotes the local coordinate along the edge i. If the edge i is inclined to the x-axis by
an angle €', then with reference to Fig. 6, the normal stress and shear stress are given by

o sin® ' cos?f’  —sin 20 6’_”
_” = 1 ) 1 . . O-IVy . (19)
Tl ——sin 20’ =sin 20"  cos 20" -
2 2 o

Xy
The stress boundary conditions give rise to the equations
Alx' = b, (20)

where

side i

> X

Fig. 6. Stress boundary conditions.
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sin® ¢ ~ cos? o ~ —sin 23i 0 0 0

" —%sin 20" %sin 20" cos 20' 0 0 0
b 0 0 0 sin® 6’ ~ cos? 9"‘ —sin 2Gi
0 0 0 —1sin 20" 1sin 20"  cos 20'

4.3. Stress discontinuity constraints

In order to permit statically admissible discontinuities at the edges of adjacent triangles, it is necessary
to enforce additional constraints on the nodal stresses. A statically admissible stress discontinuity
permits the normal stress component parallel to the discontinuity to be discontinuous, but requires
continuity of the corresponding shear and normal components. Assume that two elements ¢ and b share
a side k defined by the nodal pairs (1, 2) and (3, 4), as shown in Fig. 7. If k is a discontinuity,

equilibrium at every point along k requires:
b

a __
O-n_o-n’
T =7

where the superscripts ¢ and b are used to denote the elements a and b, respectively.
Noting that the stresses vary linearly along each element edge, the above condition is equivalent to
enforcing the constraints

g b

nl O
o _ |0 b
i ||
™4 rﬁ

> <
‘Vf

1

Vi

)/ discontinuity k

Vs

/ \ Ok -1

Fig. 7. Statically admissible stress discontinuity between adjacent triangles.




X. Zheng et al. | International Journal of Solids and Structures 37 (2000) 1211-1243 1225

If the discontinuity k is inclined to the x-axis by an angle 0; then by substituting eqn (19) into the above
matrix, the constraints for the discontinuity equilibrium form the following matrix equation:

Al =0 (21)

a a a b b b a a a b b b T
X = (axxl O-yyl axyl Oxx2 ayyZ 0xy2 Oxx3 O-yy3 O-xy3 Ox4 O-yy4 axy4 )
and where

T— sin> 0 cos 20F  —sin 20
~ | —1sin 20F Lsin 208 cos 26F

4.4. Constraints for the failure condition

From the discussion of Appendix B, the linearized failure functions of the material with vertical or
horizontal fissures, or both, can be written as follows:

AN+ Aoy, + 2400, <GV, j=1,2,...,J (22)

where A9), AY), 49),j=1,2,..., J, as defined by eqns (B9)—(B11).
Since the failure condition must be satisfied throughout the stress field, it is sufficient to enforce the
constraints (22) at each nodal point of each element. Hence, the constraint equations imposed on the

stresses at the node n can be given by the matrix equation

A" <bj (23)
where
M 4 )] (D) 7]
Ay A, 24 G
2 2 2 @)
Agcvc) Aiy) 2A(w) Oxxn G
A;’ = . ) ) . xn = O'yyn . b;l =
Oxyn
AD 4D 2y G
[ “xx v xy

4.5. Objective functions

According to the lower bound theorem, the stress components oy, 0,,, 6, must be in equilibrium
with the external loads ¢; and the influence of the gravity acting on the material. By assuming unit
thickness out-of-plane, the collapse load is defined by
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Q=J6,1dl+JydA=Q1+Q2
/ A

where [ is the length of the loading boundary, o, is the normal stress acting over the boundary and A4 is
the area considered. The above equation is derived under the assumption of unit thickness in the out-of-
plane direction.

It is obvious that Q> = [,7dA4 is a constant for many geotechnical problems, so the objective
function can be defined by Q = Lan d/ = Q,. Since the stresses vary linearly throughout each element,
then along each segment i on the loading boundary Q' = (L/2) (6,1 + 0,2) where L is the length of the
edge i and o,, 0,2 are the normal stresses at the nodes 1 and 2 (Fig. 6). If 6; denotes the inclination of
the edge i to the x-axis, then by using eqn (19) it follows that

0 = (e)'x’ (24)
where
p— . 2 — _O_I .
sin” 6; xxl
cos® 0; Ty1
o — L —sin 26; ci Uiyl
2 sin?e; | e,
cos? 0; ai;},z
| —sin 20; | i G.ixyz |

4.6. Linear programming problem

Combining all the constraint eqns (18), (20), (21), (23) and (24), the linear programming problem
corresponding to the lower bound can be defined as follows:

Maximise ¢'x,

Subject to A x = by,
A2x < b2,

where

I
c= Z ¢,
i=1
E D 1?2 ]
A=) AL+ D AL+ AL
e=1 k=1 i=1

N
A=) A},
n=I1
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T
X = (O'xxl Oypl  Oxyl Oxx2 Oyp2 Oxy2 ... OxxN OyyN O'xyN) s
E 1)
_ e i
b, = E beq—l— E b,
e=1 i=1

N
by= > b}
n=1

N is the number of nodes, E is the number of elements, D is the number of discontinuous edges, 7; is
the number of segments along the loading boundary and I, is the number of segments along the
boundary with prescribed tractions.

5. Applications

In order to validate the present formulation for fissured materials, several examples are solved in this
section. The techniques described above are used to predict the collapse load for a rigid strip footing.
Since the exact collapse load for a weightless material is known (Zheng and Booker, 1997), it provides a
useful check on the ability of the new methods to provide accurate upper and lower bounds. To
ascertain the suitability of the new formulations for more general cases, such as the bearing capacity
problems of rough or smooth footings on materials with or without unit weight, additional examples are
presented. Also, the results of investigations to ascertain the sensitivity of the new formulations to the
mesh refinement and the failure surface approximation will be given.

5.1. Bearing capacity of a weightless material

The exact collapse pressure g for a smooth or rough rigid strip footing on the surface of a weightless
fissured deposit may be expressed simply as gr = ¢N,., where expressions for the bearing capacity factor
N, for vertically and horizontally fissured materials are given by Zheng and Booker (1997). These exact
solutions will be compared with the predictions obtained using the upper and lower bound techniques
described above.

70

'Fissures Upper Bound

[6=9¢12

Analytic

Lower Bound

(1) 40 h
= 30
20 A
10
(U | . ; {
20 25 30 35 40
¢

Fig. 8. Bearing capacity of a rigid strip footing on a vertically fissured deposit (6 = ¢/2).
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Fig. 9. Bearing capacity of a rigid strip footing on a vertically and horizontally fissured deposit (5 = ¢/2).

To investigate the sensitivity of the predicted bounds to the numerical procedure, two different
meshes, one coarse and one fine, have been used to estimate the upper and lower bounds. Different
approximations of the failure surfaces, involving a different number of planes in the linearized failure
surfaces, J, were also used to calculate upper and lower bounds.

The results plotted in Figs. 8 and 9 indicate the variation of the bearing capacity factor N, with the
angle of internal friction of the material matrix, ¢, for the range 20° < ¢ <40°, and with the angle of
friction on the fissures 6 = ¢/2. The strength of the fissures is purely frictional. Fig. 8 shows the results
for a weightless vertically fissured material and Fig. 9 presents the results for a weightless material with
both vertical and horizontal fissures. These figures show that the computed bounds are strict upper and
lower bounds of the exact failure loads.

To investigate the influences of the mesh and the approximate failure surface, the problem of a rough
or smooth rigid footing on a vertically fissured material with the friction angles ¢ = 30° and 6 = ¢/2 is
examined. The results in Table 1 are the upper bounds obtained by using a coarse mesh (Fig. 10, Mesh
1) and a fine mesh (Fig. 11, Mesh 2) for selected values of J (number of planes in the linearised failure
surface). The results in Table 2 are the lower bounds obtained by using a coarse mesh (Fig. 12, Mesh 3)
and a fine mesh (Fig. 13, Mesh 4) for selected values of J.

The results in Figs. 8 and 9 establish that the upper and lower bounds are reasonably accurate, as the
analytic solutions are bracketed closely by the numerical bound solutions. It is obvious from the results
in Tables 1 and 2, that by refining the mesh or by using a more accurate approximation to the failure
surface, the accuracy in both upper and lower bounds is improved.

Table 1
Upper bound results of a vertically fissured deposit with
¢ =30°and 6 = ¢/2

Mesh J N, N, error (%)
Mesh 1 12 27.575 17.377
Mesh 2 12 25.670 9.269
Mesh 1 24 27.257 16.024
Mesh 2 24 25.116 6.910
Mesh 1 96 27.234 15.926

Mesh 2 96 25.064 6.689
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}——B/Z —}

Fig. 10. Mesh 1 for upper bound analysis of a rigid strip footing.

B2 -

Fig. 11. Mesh 2 for upper bound analysis of a rigid strip footing.

Table 2
Lower bound results of a vertically fissured deposit with
¢ =30°and 6 = ¢/2

Mesh J N, N, error (%)
Mesh 3 12 21.951 17.377
Mesh 4 12 22.030 9.269
Mesh 3 24 21.968 16.024
Mesh 4 24 22.037 6.196
Mesh 3 96 22.110 5.885

Mesh 4 96 22.132 5.791
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B2 I

Fig. 12. Mesh 3 for lower bound analysis of a rigid strip footing.

}_B/Z __1

Fig. 13. Mesh 4 for lower bound analysis of a rigid strip footing.

Table 3

Bearing capacity of smooth footing with unit weight, yB/c =1

Material Lower Characteristics Upper
bound solution bound
Vertically fissured 27.667 29.7061 34.364
Horizontally fissured 27.977 30.2354 35.584
Vertically and horizontally fissured 22.615 24.7845 29.263
Table 4
Bearing capacity of smooth footing without unit weight, yB/c =0
Material Lower Characteristics Upper
bound solution bound
Vertically fissured 22.138 22.6635 25.116
Horizontally fissured 22.132 22.6635 25.602
Vertically and horizontally fissured 18.724 19.0666 21.711
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Table 5
Bearing capacity of rough footing with unit weight, yB/c = 1

Material Lower Characteristics Upper

bound solution bound
Vertically fissured 33415 34.5294 44.975
Horizontally fissured 32.657 36.5480 44.996
Vertically and horizontally fissured 25.992 28.7688 36.471
Table 6

Bearing capacity of rough footing without unit weight, yB/c =0

Material Lower Characteristics Upper

bound solution bound
Vertically fissured 22.752 23.4323 28.965
Horizontally fissured 22.716 23.4323 28.903
Vertically and horizontally fissured 19.055 19.7589 21.711

5.2. Bearing capacity of a smooth footing on a fissured material

Consider a smooth strip rigid footing resting on the surface of a fissured material with the angles of
friction ¢ = 30° and 6 = ¢/2. Tables 3 and 4 give the bearing capacity of the smooth footing on the
fissured materials with unit weight (y # 0) and without unit weight (y = 0), respectively. In these tables,
solutions obtained independently using the method of characteristics are also presented. The upper and
lower bound solutions were computed using Mesh 2 (Fig. 11) and Mesh 4 (Fig. 13), respectively. In
both cases, J = 96.

Tables 3 and 4 show that the lower bounds are generally much more accurate than the upper bounds.
The bound results for the material with unit weight are generally less accurate than the results for the
weightless material, when each is compared with the appropriate results obtained by the method of
characteristics. The results also show that for the material with unit weight, the calculated upper bounds
overestimate the true capacity by approximately 18% and the lower bounds underestimate the true
capacity by approximately 9%.

5.3. Bearing capacity of a rough footing on a fissured material

Consider a rough strip rigid footing resting on the surface of a fissured material with the angles of
friction ¢ = 30° and 6 = ¢/2. Tables 5 and 6 give the bearing capacity of the rough footing on the
fissured materials with unit weight and without unit weight, respectively. Solutions obtained
independently using the method of characteristics are also shown in these tables. The upper and lower
bound solutions were computed using Mesh 2 (Fig. 11) and Mesh 4 (Fig. 13), respectively. In both
cases, J = 96.

Tables 5 and 6 show that, as in the case of the smooth footings, the lower bounds are generally much
more accurate than the upper bounds. The results for the material with unit weight are less accurate
than the results for the weightless material when each is compared with the appropriate results obtained
by the method of characteristics. The results also show that, for the material with unit weight, the upper
bounds overestimate the true capacity by approximately 30% and the lower bounds underestimate the
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true capacity by approximately 11%. As indicated previously, the level of accuracy can be improved by
selecting a finer mesh and a large number of linear segments to approximate the failure surface.

6. Conclusion

Formulations for the upper bound and lower bound limit analysis of fissured materials have been
presented. The numerical results indicate that both upper and lower bound methods are sufficiently
accurate for practically calculations, and may be used in tandem with each other to provide useful
bounds on the exact collapse load. For weightless fissured materials, Table 1 shows that the error in the
upper bound is of the order of 7% for the fine upper bound mesh and J = 96. Table 2 shows that the
error in the lower bound is also of the order of 7% for the fine lower bound mesh and J = 96. Tables 1
and 2 indicate generally, that by increasing the number of planes in the failure surface or refining the
meshes, the accuracy of the solutions will be raised. The results in Tables 3—6 for the cohesive-frictional
material with unit weight indicate that, although the collapse predictions obtained using the given mesh
and linearised failure functions are less accurate than those for the weightless materials, they are still
sufficiently precise for practical applications. Hence, the upper bound and the lower bound methods
presented in this paper are considered to be useful practical methods for analysing the bearing capacity
of fissured materials.
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Appendix A: shape functions
In order to formulate the upper and lower bound problems as linear programming problems, it is

necessary to use linear shape functions to approximate the non-linear field quantities in the problem. To
achieve this, assume that the considered region is modelled by the triangular elements under conditions

(x3,y3)

(xl’}ﬁ)

X

Fig. Al. Traingular element used in limit analysis.
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of plane strain and the coordinates of the three vertices of a triangle are given by (x, y1), (x2, »2) and
(x3, ¥3), as shown in Fig. Al. The linear shape functions can then be defined as follows:

1
Ny = ﬂ{(xzys — X3y2) +y3x + x5y}
B 1
N, = ﬂ{(xm —x1y3) +yax+xiy},

1
N3 = ﬁ{(xlyZ_XZYI)+y12x+x21y}s (A1)
where

X322 =X3— X2, V23=)2—)3,
X13=X1—X3, V23=D)2—D)3,

X21 = X2 — X1, J1i2=J)1—D)2,
and
1
A= F1X13y23 = X323

is the element area.

Appendix B: failure surface

Failure

A typical deposit of fissured material is shown schematically in Fig. 1. It consists of two sets of
parallel and equally spaced fissures separating blocks of the matrix material. For conditions of plane
strain in the x—y plane, failure of a perfectly plastic material is usually written in the form:

f(axxa Oyys Oxy) = 0 (B1)

where oy, 0y, 0y, denote the Cartesian stress components and where the usual geomechanics
convention of regarding compressive stresses as positive is adopted.
It is convenient to introduce an alternative set of variables:

1
X = E(Gxx — gyy) = Rcos 20

Y =o0,, = Rsin 2Q

1
P = E(O—xx + G}‘}’) (BZ)
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where it will be recognised that p is the mean stress, R is the radius of the Mohr circle and Q is the
angle between the major principal stress direction and the x-axis.

The fissure—matrix composite may fail by either the development of plastic failure in the matrix
blocks or by shear failure along the fissures. The failure surface for a geo-material weakened by a single
set of fissures, can be defined by (Zheng and Booker, 1997)

F(pa Q: R):fofleZO (B3)
where

Jo =R —sin ¢(p + q),

sin 6(p + qy)

=R —
Y sin (2Q — 28 +0)’
, sin 6(p + q)
= - B4
/2 sin 2Q — 2 +0)’ (B4)
where
q = ccot ¢,
qr = cycot o,

and where ¢ and ¢, are the cohesion of the matrix and the fissures, respectively. ¢ is the angle of internal
friction of the matrix and ¢ is the angle of friction on the fissures. Attention is restricted to materials for
which 0 <¢ and ¢,<gq.

Clearly, failure on the fissures is represented by a pair of planes, and failure in the fissure—matrix
composite can occur either through failure in the matrix or failure on the fissures. Thus, the failure
condition will be bounded by both the cone shown in Fig. B1 (corresponding to failure in the matrix)

Fig. Bl. Failure surface in the matrix.
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QA
N

Q
0

AN
QRN

\\\\'\‘\“ [

Fig. B2. Composite failure surface in X, Y, p stress space (¢ = 0).

¥

Fig. B3. Contours of the composite failure surface in X, Y stress space (£ = 0).
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and by the pair of planes given by f; and f; in eqn (B4). This leads to the composite failure surface

shown in Fig. B2 in X, Y, p stress space, and Fig. B3 which shows a section in the X, Y stress space.
Similarly, if a geo-material is weakened by two sets of fissures, its failure surface is defined by

., QR =fofi fofs fa=0

where fy, f1, f> are given in eqn (B4) and f3, f4 are defined by

sin 6(p + q)
sin 2Q —2& 4+ 6)°

=R

(B5)
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Fig. B4. Failure surface for a material with two sets of fissures and o <n/2 — J.

Fig. BS. Failure surface for a material with two sets of fissures and a>n/2 — J.

B sin 6(p + qy)
fi=R= G aa 22 -9y (B6)

Let

so that for this kind of material, the failure surface has two different shapes in X, Y stress space in Figs.
B4 and BS.

Approximation of failure surface
In order to formulate the problem as a linear programming problem, it is necessary to express the
above failure conditions as a number of linear functions having the form
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AxxOxx + A0,y + 245,06, <G.
This form is chosen because if the coordinate axes are transformed so that
|:035 05,] B |: cos 0 sin 0 } |:axx Oy :|[cos 0 —sin 0:|
oy 0y | | —sinf cos@ || oy oy, |[sind cosd
then the linear function (B7) becomes
AgO5s + Ayoy + 24504 <G
where
|:A&Y Ami| _ |: cos @ sin 0 :| |:Axx Ay ] |:cos 0 —sin 9]
Ay Ay | | —sin@ cosO || Ay, Ay || sin® cos 6

and where 0 is the angle between the x-axis and the s-axis.

1237

(B7)

It will be assumed that a zero stress state is always safe and thus, that G=0. A key assumption in the
derivation of the limit theorem is that the failure surface is convex and so the approximating failure

surface must also be convex.

Failure of fissures

Single set of fissures. For a material with a single set of fissures, as defined by (B3), failure on the fissures

corresponds to two linear failure functions, viz

AVo v+ 4V oy, +2400, <GV

A(YZ,C)O—W + A/(é,)ayy + 2A(Y21) Oxy <G @
with
0 = ——[sin (2¢ + 8) + sin J],
sin o
1
AV = .—[sin (26 4+ 0) —sin 5],
sin o

1
Agcl)) = ——cos (26 +0),
sin o

G = 2¢fcos 0,

A(xzx) = ——[sin (2¢ — 8) —sin §],
o s
) _ : .

A_V}" = —m[sln (26 — 6) —+ sin 5],

Xy

1
A — ——— cos (2 - 5),
sin o

(B8)
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% = 2cycos 0. (B9)
These failure surfaces are already in a linear form and need no approximation.

Two sets of fissures. For a material with two sets of fissures, as defined in (BS), failure on the fissures
corresponds to four linear failure functions:

Ao+ Aoy, +2400,<GY, i=1,2,3,4,
where A7), Ag’}), Ag}),, GY, (i=1,2) are defined by (BY), and 49, 4\), 40), G’ (i = 3, 4) are defined by:

xxo “yyo

A(3) —

XX

_—[sin (264 0) —sin 5],
sin o

1
®_ o .
4, = = OC[sm (2& +8) +sin 4],

cos (2¢ 4+ 90),

A(3? = ——
X}' sin o

G® = 2cycos 0,

XX

A% = —.L[sin (2¢ — &) +sin 8],
s o

1
4) _ . B o
Ayy = na OC[sm (28 — ) —sin 5],

AY) = ——cos (2¢ - 9),
: S o
GW = 2¢ycos 0. (B10)

Again, these failure surfaces are already in a linear form and need no approximation.

Failure in the material matrix

For failure in the matrix, there are two kinds of approximations: an interior and an exterior
approximation.

Interior approximation. In examining lower bound problems, the approximation of the failure surface
needs to be interior. Suppose that this approximation consists of a number of triangular faces which are
convex and contain the origin. If the three vertices of the triangle j (which are assumed to be non-

collinear) are (a(0), a')), o)), (62, 0, 603)), (6§}, 63}, a13)), then the failure surface has the equation:



Oxx Oy
1 1
o) ay)
c? 52
Oxx }y
3 53
Oyx y}
where
(1)
Oy
AN — | 4@
XX yy
(3)
Oyy
1
o)
) (2)
AE]}) - w
(3)
Oxy
(l)
‘(\”
h |
2A§f; = O'(,)
(3)
’CX
(1)
‘(‘C
H | 52
G = Uxx)
(3)

For a Mohr—Coulomb material, it is convenient to introduce a Mohr representation of the stress, i.e.

o = 5 4 RO cos 200,
ol = p»
a(xl}) = R sin 20,

RY = pWsin ¢ + ¢ cos ¢,

(2) p(Z) + R(Z) cos 29(2)

72 =
Oyy [)

\\
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Oxy
(l )
Oxy
@)
Oy

(3)
Oxy

a(l )
Py
xy
3
o)

1
ol
(2)
XX

3

‘C\

paey)
y1

oty

3
Oy

(1)
Oy

@
9y

paE)]
Ty

= AQov + Aoy, +24))

1
1

ey

Yy

2|

U

3
Oxy

>

— RW ¢cos 20

— RD cos 29(2),

Xy

0y — GV =0,
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agy) = RY gin 2!2(2),

R® = p® sin ¢ 4 ¢ cos ¢,

0'&:1) = —ccos ¢,
(3) _

0y, = —Ccos ¢,

ag) =0.

By choosing the special points on the surface, viz assume that p() = p® = p, then

_cos (Q(l) + Q(z))

a0 =2 TR g,
’ cos (Qm — Qm)
) Q(]) 9(2)
A(‘{})7 — _M — sin d)’
i cos (Q(]) - 9(2))
0 — sin (Q(l) + Q(Z))
¥ ) @)’
cos (Q -Q )
GV =2ccosp, j=12,...,J, (B11)

where J is the number of the triangles to approximate the Mohr—Coulomb failure surface.

Exterior approximation. For the upper bound theorem, it is necessary to employ an exterior approxi-
mation. This can be done by selecting a number of sample points on the surface and determining their

tangential planes. Thus, if (¢{), 6{}), 6{1)) is such a sample point, then its tangential plane is defined by

Ao+ AVoyy + 2400, -GV =0
where
AD — 9 _ ) _ 0 _ 0
xx = E Oxx = Oxxs Opy = 05 Oxp = Oy )

xXX° yy?

. 9 A A A
A(,'[,)v = —/ (axx =0 oy =0\). 0y = 623’)’

. /(Gxx = O'S,,)C, Oyy = O-;»l});a Oxy = O-E(ly)v):
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G = A(i)o.(i) 4 A(i)o.(i) +2A(1)U(1)

xx @y ¥y xy%xpe
For a Mohr—Coulomb material, it is easy to find that

A(Yli = cos 20" — sin o,

Aﬁ’}) = —cos 2Q” — sin o,
D) _ ()

Ay = sin 207,

G=2cos ¢, j=1,2,...,J (B12)

where J is the number of the sample points on the failure surface.

Appendix C: velocity discontinuity

The velocity discontinuity multiplier x is introduced as a new feature in the upper bound formulation.
Consider a plastic material deforming in plane strain and obeying a failure criterion, eqn (1), and an
associated flow rule, eqn (9). The region shown in Fig. C1 includes an intense distortion in the deformation
field.

As the thickness z — 0, a velocity discontinuity may develop. In such a case it would be found that
(du/dy) — oo and (dv/dy) — oo, and du/dx, dv/dx are bounded when z — 0. It can thus be seen that
A — o0 and (3f/90,) — 0. (Because f is smooth, 9f/dg; are bounded.) Now integrating through the
thickness of the layer, it is found that
i Au:Aiaaf C0=niY

b
Oy Oxy 00

Av = AJ, (C1)
where
. . zZ Za Za
Ai:K:JidyEO, Au:J—udy, AU:Jldy,
0 an an

and thus,

intense distortion

Fig. Cl. Intensive distortion zone with thickness z.
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g _ 3f/dayy
Au af/d0y,

where z is the thickness of the layer. The quantity x is called the plastic discontinuity multiplier. The
reason for this nomenclature will emerge as the quantity is developed when a discontinuity appears.
On such a velocity discontinuity we have

of
f(o'xxa Oyys Oxy) = 0, F(O’xm Oyys Oxy) = 0. (C2)
When a discontinuity is parallel to the x-axis the failure surface is independent of oy, and the
discontinuities only appear at the points in which (C2) holds. Therefore, for the purpose of calculation,
the failure surface can be replaced by its tangential planes at the stress state being considered. These
tangential planes are:

fi=0y—0otanp —c=0,

fr=—0y—0ytanp —c=0. (C3)
As a consequence, the flow rule at the discontinuity can be rewritten as
: . Ofi 5 9f
Sy = A1
Exx lao'xx +/L2aaxxs
. ;0 P
8},-y.:;hli+/t2 /2 s
00,y 00,
: ; dft oy df
Vy = 4 oy ——.
Y xy 180_” +A280.\'y

Hence, eqn (C1) can be written as

. 0t . df
0= :
Klaaxx +K280'xx’
d 0
Av = K /i + K7 ki :—(icl—icz)tanqﬁ,
doy, 90y,
.0 .0 . .
Au = i /i + 1) /> = (kK| — K1), (C4)
00y 00y

and the power dissipation in the discontinuous region is given by

P, = limJ J(axxéxx +0ypEyy + 0xy7 ) dx dy = J c(kc 4+ 1) dl (C5)
! i

Zz—> 0

where / is the length of the discontinuity, and the constraint equations at the discontinuity are given by

Av = —(k| + K7) tan ¢,

Au = (KZ] — K2) (C6)
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