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Abstract

Formulations for the upper and lower bound theorems of plasticity are presented for ®ssured soil and jointed
rock. The methods ignore elastic deformations and are based on the assumption that the ®ssured soil or rock mass

can be treated as an anisotropic, rigid-plastic continuum. In the upper bound formulation, velocity discontinuity
multipliers are introduced to deal with the discontinuities in the velocity ®eld. For both the upper and lower bound
formulations, linearized failure surfaces for the ®ssured materials are developed. The illustrative examples indicate
that the new procedures are very e�cient even when a quite coarse mesh is used to represent the mass of failing

material, and that the `exact' failure loads are always bracketed by the upper bound and lower bound calculations.
Moreover, by increasing the number of planes in the failure surface or/and re®ning the meshes, the accuracy of the
bounds is raised. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

Natural soil and rock deposits often have a history which involves a wide range of stress states. This
can include overstressing and also tensile failure of such geo-materials and so may result in extensive
®ssuring or jointing of the medium. Such defects occur as physical discontinuities within the matrix
material, and hence, the mechanical behaviour of these rock and soil masses is governed not only by the
intact matrix material but also by the characteristics of the discontinuities. The presence of defects in the
material often gives rise to numerical di�culties during engineering analysis of these materials. However,
if the ®ssures in each set are reasonably constant in orientation and closely spaced, then the overall mass
can be treated as an anisotropic continuum for the purpose of mechanical analysis. The properties of
this composite material are determined by the defect strength, the strength of the intact matrix, and the
orientations of the defect sets. Examples of the engineering analysis of ®ssured materials using this
approach appear in papers by Davis (1980), Alehossein et al. (1992), Lav et al. (1995) and Zheng and
Booker (1997). All these studies reached similar conclusions, i.e., that the presence of weak ®ssures and
joints signi®cantly reduces the bearing capacity of shallow foundations.
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Limit analysis techniques, such as the upper and lower bound methods of the theory of plasticity,
have proved to be the most e�ective methods for predicting plastic collapse in many areas of soil and
rock mechanics. They have been used previously to solve complex problems that involve anisotropy and
non-homogeneity of soil or rock. As will be demonstrated, they also provide a powerful approach for
studying the behaviour of ®ssured materials. For example, Chen (1975) applied limit analysis to the
bearing capacity of footings on a single layer and two-layer soils, exhibiting both anisotropy and non-
homogeneity. His analysis was based on the assumption of a circular failure surface. Reddy and
Venkatakrishna (1982), by adopting a Prandtl-type failure mechanism, applied the upper bound theorem
to obtain the bearing capacity of a strip footing on cohesive±frictional soils exhibiting anisotropy and
non-homogeneity in cohesion. Sloan, (1988) presented a technique, which computes a statically
admissible stress ®eld via ®nite elements and linear programming, for computing lower bound limit
loads under conditions of plane strain. His results show that the solution is a strict lower bound on the
true collapse load. By using the upper bound theory, Michalowski (1993) found that the limit analysis
method is a convenient method for calculating the bearing capacity in cases where the soil strength
increases with depth. Sloan and Kleeman (1995) proposed a quite general upper bound method which
permits a large number of discontinuities in the velocity ®eld and can be applied to both homogeneous
and non-homogeneous materials whose strength is cohesive±frictional, or purely cohesive. Yu and Sloan
(1997) have applied the limit theorems to reinforced soils and found that a major advantage of these
methods is that the complex loading, geometry and soil behaviour can all be dealt with in a
straightforward manner.

The purpose of this paper is to use the limit analysis method to develop a general numerical approach
for ®nding the lower bound and upper bound solutions to the bearing capacity of a smooth or rough
rigid strip footing resting on ®ssured soil or rock (Fig. 1). To achieve this objective, the formulations
developed for both lower and upper bound solutions assume that the failure criterion for a ®ssured
material can be linearized. Elastic deformations are ignored and it is assumed that a ®ssured material
can be treated as an anisotropic continuum. A number of applications are given to illustrate that the
formulations are computationally e�cient and give good estimates of the true limit loads, even with a
relatively coarse computational grid. Detailed comparisons with results obtained from the method of
characteristics (Zheng and Booker, 1997) are also presented. The illustrative examples indicate that by
increasing the accuracy of the linearized failure criterion and by re®ning the mesh sizes, the numerically
obtained upper and lower bounds more closely bracket the exact collapse load.

2. Statement of the problem

The development of failure criteria for materials with regular sets of ®ssures has been presented
previously by a number of authors, e.g. Davis (1980), Zheng and Booker (1997). For completeness, the

Fig. 1. Footing on a ®ssured material.
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formulation of the failure surface for a cohesive±frictional material with either a single set of ®ssures or
two sets of ®ssures is presented in Appendix B.

Consider a plastic body occupying a volume V with a surface S. Suppose that a portion of the surface
SL is loaded while the remainder of the surface is subjected to zero tractions or velocities, and hence
zero power.

For two-dimensional problems, the bound theorems allow determination of upper and lower bounds
of the quantity

�
SL
�Txu� Tyu� dS, which is the power input to SL: �Tx, Ty� are the components of the

traction and (u, u ) are the velocity components along SL. The power input may be used to calculate the
upper and lower bounds in a number of cases, as indicated below.

If SL is a straight portion of the boundary, corresponding to the interface with a rigid footing that is
subjected to a normal velocity P and zero tangential displacement, then it is clear that�

SL

ÿ
Txu� Tyu

�
dS � PPrn

where Prn is the normal force on the rough rigid footing. Similarly, if a straight portion of the boundary
is subjected to a normal velocity P, but is shear free, then�

SL

ÿ
Txu� Tyu

�
dS � PPsn

where Psn is the normal force on the smooth rigid footing.
The zero power condition on the remainder of the boundary includes many possibilities and some of

these are:

1. Traction free, i.e. Tx � 0, Ty � 0,
2. Zero velocity, i.e. u � 0, u � 0.

The boundary S±SL can be made up of a combination of these conditions.

3. Formulation of the upper bound problem

The upper bound theorem is a powerful tool for stability analysis and has been widely used in many
areas of goetechnical design. General formulations of the upper bound theorem use ®nite elements and
linear programming (e.g. Sloan and Kleeman, 1995). The conditions required to establish an upper
bound solution to the collapse load are essentially as follows:

The loads, determined by equating the external work to the internal dissipation in an assumed
velocity ®eld that satis®es (a) the velocity boundary conditions and (b) the strain and velocity
compatibility conditions, are not less than the actual collapse load.

Thus, the upper bound technique considers only velocity, failure modes and energy dissipation. The
stress distribution need not be in equilibrium, and is only de®ned in the deforming regions of the body.
Hence, the constraints in the problem will be imposed on velocities by the plastic ¯ow rule, velocity
discontinuities and velocity boundary conditions. Once the solution to the upper bound linear
programming problem has been found, a rigorous upper bound on the exact collapse load is found by
equating the work of the external forces to the dissipation of internal power. It has been demonstrated
in the limit theorems of plasticity theory that the stress and velocity ®elds are unique and complete if
the material follows an associated ¯ow rule. Accordingly, it is assumed that the material obeys an
associated ¯ow rule in this paper.

X. Zheng et al. / International Journal of Solids and Structures 37 (2000) 1211±1243 1213



The formulation in this section generalises the active set upper bound formulation of Sloan and
Kleeman (1995) to permit a large number of discontinuities in the velocity ®eld. Their method is based
on a linear three-noded triangle with six unknown nodal velocities, a ®xed number of unknown plastic
multipliers and a ®xed number of unknowns to describe the tangential velocity jumps along the length
of a discontinuity. In the formulation presented here, it is also assumed that a velocity discontinuity
may occur at any edge shared by a pair of adjacent triangles, and each discontinuity is typically de®ned
by four nodes. A new feature in this formulation is the introduction of the velocity discontinuity
multiplier, which plays a similar role to the tangential velocity jump (Sloan and Kleeman, 1995). Along
a discontinuity, there are four unknown velocity discontinuity multipliers.

Assume that the rigid plastic region can be divided into triangular elements, as shown in Fig. 2, and
that within an element there are six velocity components (Fig. 3) which are assumed to vary linearly
according to

u �
X3
i�1

Niui,

u �
X3
i�1

Niui, �1�

Fig. 2. Mesh of linear triangles for limit analysis.

Fig. 3. Triangular element for upper bound limit analysis.
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where ui and ui are the nodal velocities in the x- and y-directions, respectively, and Ni are linear shape
functions, as de®ned in eqns (A1) of Appendix A.

3.1. Constraints for plastic ¯ow in a continuum

For plane strain deformation of a rigid plastic material, the failure condition can be de®ned as:

f�sxx, syy, sxy � � 0 �2�

in which �sxx, syy, sxy� are the planar stress components and the ¯ow rule takes the following form:

_exx � _l
@ f

@sxx
� ÿ@u

@x

_eyy � _l
@f

@syy
� ÿ @u

@y

gxy � _l
@f

@sxy
� ÿ

�
@u

@y
� @u
@x

�
�3�

where _le0 is a plastic multiplier and u and u are the velocity components de®ned previously.
In order to formulate the problem as a linear programming problem, the failure surface has to be

given by a linear function or linear functions. Following the discussion given in Appendix B for a
material with vertical and/or horizontal ®ssures, the linearized failure functions take the following form:

fj � A�i�xxsxx � A�i�yysyy � 2A�i�xysxy ÿ G �j� � 0, j � 1, . . . , J, �4�

where A�j �xx, A
�j �
yy , A

�j �
xy, G

�j � �j � 1, . . . , J,� are de®ned in eqns (B9), (B10) and (B12). Eqns (3) impose three
equality constraints on the nodal velocities and plastic multipliers for each element, so that the plastic
strain rates are given by

_exx � ÿ@u
@x
� _l

@f

@sxx
�
XJ
j�1

_l j
@ fj
@sxx

�
XJ
j�1

_l jA
�j�
xx,

_eyy � ÿ @u
@y
� _l

@f

@syy
�
XJ
j�1

_l j
@fj
@syy

�
XJ
j�1

_l jA
�j�
yy,

_gxy � ÿ
�
@u
@x
� @u
@y

�
� _l

@ f

@sxy
�
XJ
j�1

_l j
@ fj
@sxy

� 2
XJ
j�1

_l jA
�j�
xy, �5�

where _l j is the non-negative plastic multiplier associated with the j-th plane of the failure surface.
Di�erentiating eqns (1) with respect to the coordinates and substituting into (5), the ¯ow rule
constraints for each triangle may be written as
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X3
i�1

@Ni

@x
ui �

XJ
j�1

_l jA
�j�
xx � 0,

X3
i�1

@Ni

@y
ui �

XJ
j�1

_l jA
�j�
yy � 0,

X3
i�1

@Ni

@x
ui �

X3
i�1

@Ni

@y
ui � 2

XJ
j�1

_l jA
�j�
xy � 0,

where _l je0 �j � 1, . . . , J �. By using the shape functions given in (A1), the matrix form of these ¯ow
rule constraints, which must be satis®ed by every triangle in the mesh, is given by

Ae
p1x

e
1 ÿ Ae

p2xe
2 � 0 �6�

where

Ae
p1 �

1

2A

0@ y23 0 y31 0 y12 0
0 x32 0 x13 0 x21

x32 y23 x13 y31 x21 y12

1A, xe
1 �

26666664
u1
u1
u2
u2
u3
u3

37777775,

Ae
p2 �

0BBB@
A�1�xx . . . A�j�xx . . . A�J�xx

A�1�yy . . . A�j�yy . . . A�J�yy

2A�1�xy . . . 2A�j�xy . . . 2A�J�xy

1CCCA, xe
2 �

26666666664

_l
�e�
1

..

.

_l
�e�
j

..

.

_l
�e�
J

37777777775
:

The superscript e denotes the element e in the mesh and there are J inequality constraints on the plastic
multipliers of the form xe

2e0.

3.2. Constraints for velocity discontinuities

If the discontinuity is inclined to the x-axis by an angle y, then a coordinate transformation is
required. Let�

s
t

�
�
�

cos y sin y
ÿsin y cos y

��
x
y

�
: �7�

then �
us
ut

�
�
�

cos y sin y
ÿsin y cos y

��
u
u

�
�8�

Hence, the discontinuous constraint equtions (C5) presented in Appendix C can be rewritten as

ÿsin yDu� cos yDu � ÿ� _k1 � _k2 � tan f,

cos yDu� sin yDu � ÿ� _k1 ÿ _k2�: �9�
where Du and Du are velocity jumps in the x- and y-directions, respectively. These jumps are illustrated
in Fig. 4.

X. Zheng et al. / International Journal of Solids and Structures 37 (2000) 1211±12431216



For each discontinuity, therefore, the matrix form of these discontinuity constraints is given by four
equations with four unknowns, i.e.

Ak
d1x

k
1 ÿ Ak

d3x
k
3 � 0, �10�

where

Ak
d1 �

2664
ÿsin y cos y sin y ÿcos y 0 0 0 0
cos y sin y ÿcos y ÿsin y 0 0 0 0
0 0 0 0 ÿsin y cos y sin y ÿcos y
0 0 0 0 cos y sin y ÿcos y ÿsin y

3775,

Ak
d3 �

2664
tan f tan f 0 0
1 ÿ1 0 0
0 0 tan f tan f
0 0 1 ÿ1

3775,

xk
1 �

ÿ
u1 u1 u2 u2 u3 u3 u4 u4

�T
,

xk
3 �

�
_k �1,2�

k

1 _k �1,2�
k

2 _k �3,4�
k

1 _k �3,4�
k

2

�T

e0,

and the superscript k is the index of the discontinuity.

3.3. Constraints for velocity boundary conditions

To be kinematically admissible, the computed velocity ®eld must satisfy the prescribed boundary
conditions. Consider a segment of the boundary with the end nodes i1 and i2. If the segment is inclined
at an angle y to the x-axis, then by using the coordinate transformation (8) it is found that�

cos y sin y
ÿsin y cos y

��
ui
ui

�
�
�

�u
�u

�

Fig. 4. Velocity discontinuity.
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where �u and �u are prescribed nodal tangential and normal velocity components, respectively and node i
denotes a point on the straight line i1i2. Thus, these constraints may be expressed in the following
matrix form:

Ai
bx

i
1 � bi, �11�

where

Ai
b �

�
cos y sin y
ÿsin y cos y

�
, xi1 �

�
ui
ui

�
, bi �

�
�u
�u

�
:

3.4. Objective function

Plastic ¯ow may occur in both the continuum and the velocity discontinuities. The total power
dissipated by these means constitutes the objective function, which can be expressed as a function of
plastic multipliers and the velocity discontinuity multipliers.

3.5. Power dissipation in a plastic region

Within each triangle, the power dissipated by the plastic stresses is given by

Pe
c �

�
Ae

ÿ
sxx_exx � syy_eyy � sxy _gxy� dA �

XJ
j�1

_g j

�
Ae

G �j� dA,

where Ae denote the area of the triangle and G �j � are de®ned in Appendix B. Therefore, the power
dissipated by the plastic stresses may be evaluated by

Pe
c �

ÿ
cec
�T

xe
2 �12�

where

cec �

2666666666664

�
Ae

G�1� dA�
Ae

G �2� dA

..

.�
Ae

G �J� dA

3777777777775
, xe

2 �

266666664

_g �e�1

_g �e�2

..

.

_g �e�J

377777775

and xe
2e0.

3.6. Power dissipation along a velocity discontinuity

From the discussion in Appendix C, the power dissipated by plastic shearing along each velocity
discontinuity k is given by an integral of the form
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Pk
d �

�
l

c� _k1 � _k2 � dl

where l denotes the length of the discontinuity and c is the cohesion of the matrix material. Therefore,
the power dissipated by the discontinuity may be evaluated by:

Pk
d �

�
ckd

�T

xk
3 �13�

where

ckd �
1

2

266666666666664

�
l

c dl�
l

c dl�
l

c dl�
l

c dl

377777777777775
, xk

3 �

266666664

_k �1,2�
k

1

_k �1,2�
k

2

_k �3,4�
k

1

_k �3,4�
k

2

377777775:

3.7. External work due to the weight of soil

The external work expended in displacing the weight of soil within an element e is given by

W e
g �

�
Ae

ÿ
gxu� gyu

�
dA � 1

3
gxA

e�u1 � u2 � u3� � 1

3
gyA

e�u1 � u2 � u3 �

where gx and gy are components of the unit weight of the deposit in the x- and y-directions, respectively,
and where ui, ui �i � 1, 2, 3� are velocity components at the nodal points of the element, and Ae denotes
the area of this element, viz

W e
g �

ÿ
ceg
�Txe

1 �14�

where

ceg �
Ae

3

266666664

gx
gy
gx
gy
gx
gy

377777775, xe
1 �

26666664
u1
u1
u2
u2
u3
u3

37777775:

Equating the external work to the power dissipated provides the quantity Q to be minimised by an
appropriate optimisation programme. Therefore, the linear programming problem corresponding to the
upper bound is de®ned by

Minimise Q � Pc � Pd ÿWg
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Subject to Ap1x1 ÿ Ap2x2 � 0
Ad1x1 ÿAd3x3 � 0
Abx1 � b
x2e0
x3e0

where

Pc �
XE
e�1

Pe
c

Pd �
XD
k�1

Pk
d

Wg �
XE
e�1

W e
g

Ap1 �
XE
e�1

Ae
p1

Ap2 �
XE
e�1

Ae
p2

Ad1 �
XD
k�1

Ak
d1

Ad3 �
XD
k�1

Ak
d3

Ab �
XI
i�1

Ai
b

b �
XI
i�1

bi

and
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x1 �

2666666666664

u1
u1
u2
u2

..

.

uN
uN

3777777777775
, x2 �

2666666666666666666666666666664

_l
�1�
1

_l
�1�
2

..

.

_l
�1�
J

..

.

_l
�E�
1

_l
�E�
2

..

.

_l
�E�
J

3777777777777777777777777777775

, x3 �

26666666666666666666666664

_k �1,2�
1

1

_k �1,2�
1

2

_k �3,4�
1

1

_k �3,4�
1

2

..

.

_k �1,2�
D

1

_k �1,2�
D

2

_k �3,4�
D

1

_k �3,4�
D

2

37777777777777777777777775

E is the number of elements, D is the number of discontinuities, N is the number of nodes and I is the
number of segments along the boundary.

4. Formulation of the lower bound problem

The lower bound theorem of the classical plasticity theory considers only equilibrium and failure and
gives no consideration to kinematics. It is a powerful tool for analysing the stability of problems in soil
mechanics. The theory assumes a perfectly plastic soil model with an associated ¯ow rule and states that
any statically admissible stress ®eld will furnish a lower bound estimate of the true limit load. The
conditions required to establish a lower bound solution to the collapse load are essentially as follows:

The loads, determined from a distribution of stress alone, that satisfy (a) the equilibrium equations,
(b) the stress boundary conditions and (c) nowhere violates the yield criterion, are not greater than
the actual collapse load.

Similar to the formulation of the upper bound problem, the formulation of the lower bound problem
also permits discontinuities in the stress ®eld. In the present formulation, triangular elements are used to
model the stress ®eld under conditions of plane strain (Fig. 2). The constraints in the problem will be
imposed on the stresses by the equilibrium equations, the stress boundary conditions, the discontinuity
equilibrium equations and the failure functions.

Assume that the variation of the stress throughout each element is linear and each node is associated
with three stress components (shown in Fig. 5) which can be expressed as:

sxx �
X3
i�1

Nisixx,

syy �
X3
i�1

Nisiyy,

sxy �
X3
i�1

Nisixy, �15�
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where sixx, s
i
yy, s

i
xy �i � 1, 2, 3� are nodal stress components and Ni are linear shape functions

(A1).

4.1. Constraints for element equilibrium

In order to satisfy equilibrium, the stresses throughout each triangular element must obey the stress
equilibrium equations:

@sxx
@x
� @sxy

@y
� gx,

@sxy
@x
� @syy

@y
� gy: �16�

The stress must also satisfy the boundary conditions

ns � q �17�
where gx and gy denote the components of body force in the x- and y-directions, respectively, and where
n is the outward unit normal vector to a surface element and q is a surface traction vector.

By using the eqn (15) and the shape functions (A1), the discrete equilibrium equations expressed in
terms of the nodal stresses have the form of

Ae
eqxe � be

eq �18�
where

Ae
eq �

1

2Ae

�
y23 0 x32 y31 0 x13 y12 0 x21

0 x32 y23 0 x13 y31 0 x21 y12

�
,

xe � ÿ sexx1 seyy1 sexy1 sexx2 seyy2 sexy2 sexx3 seyy3 sexy3
�T
,

be
eq �

�
gx
gy

�
and where Ae is the area of the element e.

Fig. 5. Triangular element for lower bound limit analysis.
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4.2. Constraints for boundary conditions

Following Sloan (1988), a special boundary condition relevant to many geotechnical engineering
problems is used, i.e., the stress boundary condition (17) takes the following values

sn � q � constant,

t � t � constant:

Assuming that the edge i of a triangle e has endpoints 1 and 2, and qk, tk �k � 1, 2� are the normal
stresses and shear stresses speci®ed at the nodes 1 and 2, respectively (shown in Fig. 6). Since each of
the stress components sxx, syy, sxy varies linearly within each element, i.e., they vary linearly along the
edge i, then it is possible to cater for a slightly more general type of boundary condition of the form

sin � q1 � �q2 ÿ q1� Z
L
,

ti � t1 � �t2 ÿ t1� Z
L
,

where Z 2 �0, 1� denotes the local coordinate along the edge i. If the edge i is inclined to the x-axis by
an angle yi, then with reference to Fig. 6, the normal stress and shear stress are given by

 
sin

ti

1A �
0@ sin2 yi cos2yi ÿsin 2yi

ÿ1
2

sin 2yi
1

2
sin 2yi cos 2yi

1A
0BBB@
sixx

siyy

sixy

1CCCA: �19�

The stress boundary conditions give rise to the equations

Ai
bx

i � bi
b �20�

where

Fig. 6. Stress boundary conditions.
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Ai
b �

266664
sin2 yi cos2 yi ÿsin 2yi 0 0 0
ÿ1

2sin 2yi 1
2sin 2yi cos 2yi 0 0 0

0 0 0 sin2 yi cos2 yi ÿsin 2yi

0 0 0 ÿ 1
2sin 2yi 1

2sin 2yi cos 2yi

377775,

xi �
�
sixx1 siyy1 sixy1 sixx2 siyy2 sixy2

�T

,

bi
b �

ÿ
q1 t1 q2 t2

�T
:

4.3. Stress discontinuity constraints

In order to permit statically admissible discontinuities at the edges of adjacent triangles, it is necessary
to enforce additional constraints on the nodal stresses. A statically admissible stress discontinuity
permits the normal stress component parallel to the discontinuity to be discontinuous, but requires
continuity of the corresponding shear and normal components. Assume that two elements a and b share
a side k de®ned by the nodal pairs (1, 2) and (3, 4), as shown in Fig. 7. If k is a discontinuity,
equilibrium at every point along k requires:

san � sbn,

ta � tb

where the superscripts a and b are used to denote the elements a and b, respectively.
Noting that the stresses vary linearly along each element edge, the above condition is equivalent to

enforcing the constraints266664
san1
san3
ta1
ta3

377775 �
266664
sbn2
sbn4
tb2
tb4

377775:

Fig. 7. Statically admissible stress discontinuity between adjacent triangles.
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If the discontinuity k is inclined to the x-axis by an angle yk then by substituting eqn (19) into the above
matrix, the constraints for the discontinuity equilibrium form the following matrix equation:

Ak
dxk � 0 �21�

where

Ak
d �

�
T ÿT 0 0
0 0 T ÿT

�
,

xk �
�
saxx1 sayy1 saxy1 sbxx2 sbyy2 sbxy2 saxx3 sayy3 saxy3 sbxx4 sbyy4 sbxy4

�T

and where

T �
 

sin2 yk cos 2yk ÿsin 2yk

ÿ1
2sin 2yk 1

2sin 2yk cos 2yk

!
:

4.4. Constraints for the failure condition

From the discussion of Appendix B, the linearized failure functions of the material with vertical or
horizontal ®ssures, or both, can be written as follows:

A�j�xxsxx � A�j�yysyy � 2A�j�xysxyRG �j�, j � 1, 2, . . . , J �22�

where A�j �xx, A
�j �
yy , A

�j �
xy, j � 1, 2, . . . , J, as de®ned by eqns (B9)±(B11).

Since the failure condition must be satis®ed throughout the stress ®eld, it is su�cient to enforce the
constraints (22) at each nodal point of each element. Hence, the constraint equations imposed on the
stresses at the node n can be given by the matrix equation

An
f x

nRbn
f �23�

where

An
f �

266666664

A�1�xx A�1�yy 2A�1�xy

A�2�xx A�2�yy 2A�2�xy

..

. ..
. ..

.

A�J�xx A�J�yy 2A�J�xy

377777775
, xn �

0@sxxn
syyn
sxyn

1A, bn
f �

2666664
G �1�

G �2�

..

.

G �J�

3777775:

4.5. Objective functions

According to the lower bound theorem, the stress components sxx, syy, sxy must be in equilibrium
with the external loads qi and the in¯uence of the gravity acting on the material. By assuming unit
thickness out-of-plane, the collapse load is de®ned by
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Q �
�
l

sn dl�
�
A

g dA � Q1 �Q2

where l is the length of the loading boundary, sn is the normal stress acting over the boundary and A is
the area considered. The above equation is derived under the assumption of unit thickness in the out-of-
plane direction.

It is obvious that Q2 �
�
A g dA is a constant for many geotechnical problems, so the objective

function can be de®ned by Q � �l sn dl � Q1. Since the stresses vary linearly throughout each element,
then along each segment i on the loading boundary Qi � �L=2� �sn1 � sn2� where L is the length of the
edge i and sn1, sn2 are the normal stresses at the nodes 1 and 2 (Fig. 6). If yi denotes the inclination of
the edge i to the x-axis, then by using eqn (19) it follows that

Qi � �ci�Txi �24�
where

ci � L

2

266666666664

sin2 yi
cos2 yi
ÿsin 2yi
sin2 yi
cos2 yi
ÿsin 2yi

377777777775
, x i �

2666666666664

sixx1
siyy1

sixy1

sixx2
siyy2

sixy2

3777777777775
:

4.6. Linear programming problem

Combining all the constraint eqns (18), (20), (21), (23) and (24), the linear programming problem
corresponding to the lower bound can be de®ned as follows:

Maximise cTx,

Subject to A1x � b1,
A2x E b2,

where

c �
XI1
i�1

ci,

A1 �
XE
e�1

Ae
eq �

XD
k�1

Ak
d �

XI 2

i�1
Ai
b,

A2 �
XN
n�1

An
f ,
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x � ÿ sxx1 syy1 sxy1 sxx2 syy2 sxy2 . . . sxxN syyN sxyN
�T
,

b1 �
XE
e�1

be
eq �

XI 2

i�1
bi
b,

b2 �
XN
n�1

bn
f :

N is the number of nodes, E is the number of elements, D is the number of discontinuous edges, I1 is
the number of segments along the loading boundary and I2 is the number of segments along the
boundary with prescribed tractions.

5. Applications

In order to validate the present formulation for ®ssured materials, several examples are solved in this
section. The techniques described above are used to predict the collapse load for a rigid strip footing.
Since the exact collapse load for a weightless material is known (Zheng and Booker, 1997), it provides a
useful check on the ability of the new methods to provide accurate upper and lower bounds. To
ascertain the suitability of the new formulations for more general cases, such as the bearing capacity
problems of rough or smooth footings on materials with or without unit weight, additional examples are
presented. Also, the results of investigations to ascertain the sensitivity of the new formulations to the
mesh re®nement and the failure surface approximation will be given.

5.1. Bearing capacity of a weightless material

The exact collapse pressure qF for a smooth or rough rigid strip footing on the surface of a weightless
®ssured deposit may be expressed simply as qF � cNc, where expressions for the bearing capacity factor
Nc for vertically and horizontally ®ssured materials are given by Zheng and Booker (1997). These exact
solutions will be compared with the predictions obtained using the upper and lower bound techniques
described above.

Fig. 8. Bearing capacity of a rigid strip footing on a vertically ®ssured deposit (d � f=2).
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To investigate the sensitivity of the predicted bounds to the numerical procedure, two di�erent
meshes, one coarse and one ®ne, have been used to estimate the upper and lower bounds. Di�erent
approximations of the failure surfaces, involving a di�erent number of planes in the linearized failure
surfaces, J, were also used to calculate upper and lower bounds.

The results plotted in Figs. 8 and 9 indicate the variation of the bearing capacity factor Nc with the
angle of internal friction of the material matrix, f, for the range 208EfE408, and with the angle of
friction on the ®ssures d � f=2. The strength of the ®ssures is purely frictional. Fig. 8 shows the results
for a weightless vertically ®ssured material and Fig. 9 presents the results for a weightless material with
both vertical and horizontal ®ssures. These ®gures show that the computed bounds are strict upper and
lower bounds of the exact failure loads.

To investigate the in¯uences of the mesh and the approximate failure surface, the problem of a rough
or smooth rigid footing on a vertically ®ssured material with the friction angles f � 308 and d � f=2 is
examined. The results in Table 1 are the upper bounds obtained by using a coarse mesh (Fig. 10, Mesh
1) and a ®ne mesh (Fig. 11, Mesh 2) for selected values of J (number of planes in the linearised failure
surface). The results in Table 2 are the lower bounds obtained by using a coarse mesh (Fig. 12, Mesh 3)
and a ®ne mesh (Fig. 13, Mesh 4) for selected values of J.

The results in Figs. 8 and 9 establish that the upper and lower bounds are reasonably accurate, as the
analytic solutions are bracketed closely by the numerical bound solutions. It is obvious from the results
in Tables 1 and 2, that by re®ning the mesh or by using a more accurate approximation to the failure
surface, the accuracy in both upper and lower bounds is improved.

Fig. 9. Bearing capacity of a rigid strip footing on a vertically and horizontally ®ssured deposit (d � f=2).

Table 1

Upper bound results of a vertically ®ssured deposit with

f � 308 and d � f=2

Mesh J Nc Nc error (%)

Mesh 1 12 27.575 17.377

Mesh 2 12 25.670 9.269

Mesh 1 24 27.257 16.024

Mesh 2 24 25.116 6.910

Mesh 1 96 27.234 15.926

Mesh 2 96 25.064 6.689

X. Zheng et al. / International Journal of Solids and Structures 37 (2000) 1211±12431228



Fig. 10. Mesh 1 for upper bound analysis of a rigid strip footing.

Fig. 11. Mesh 2 for upper bound analysis of a rigid strip footing.

Table 2

Lower bound results of a vertically ®ssured deposit with

f � 308 and d � f=2

Mesh J Nc Nc error (%)

Mesh 3 12 21.951 17.377

Mesh 4 12 22.030 9.269

Mesh 3 24 21.968 16.024

Mesh 4 24 22.037 6.196

Mesh 3 96 22.110 5.885

Mesh 4 96 22.132 5.791
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Fig. 12. Mesh 3 for lower bound analysis of a rigid strip footing.

Fig. 13. Mesh 4 for lower bound analysis of a rigid strip footing.

Table 3

Bearing capacity of smooth footing with unit weight, gB=c � 1

Material Lower

bound

Characteristics

solution

Upper

bound

Vertically ®ssured 27.667 29.7061 34.364

Horizontally ®ssured 27.977 30.2354 35.584

Vertically and horizontally ®ssured 22.615 24.7845 29.263

Table 4

Bearing capacity of smooth footing without unit weight, gB=c � 0

Material Lower

bound

Characteristics

solution

Upper

bound

Vertically ®ssured 22.138 22.6635 25.116

Horizontally ®ssured 22.132 22.6635 25.602

Vertically and horizontally ®ssured 18.724 19.0666 21.711
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5.2. Bearing capacity of a smooth footing on a ®ssured material

Consider a smooth strip rigid footing resting on the surface of a ®ssured material with the angles of
friction f � 308 and d � f=2. Tables 3 and 4 give the bearing capacity of the smooth footing on the
®ssured materials with unit weight �g 6� 0� and without unit weight �g � 0�, respectively. In these tables,
solutions obtained independently using the method of characteristics are also presented. The upper and
lower bound solutions were computed using Mesh 2 (Fig. 11) and Mesh 4 (Fig. 13), respectively. In
both cases, J = 96.

Tables 3 and 4 show that the lower bounds are generally much more accurate than the upper bounds.
The bound results for the material with unit weight are generally less accurate than the results for the
weightless material, when each is compared with the appropriate results obtained by the method of
characteristics. The results also show that for the material with unit weight, the calculated upper bounds
overestimate the true capacity by approximately 18% and the lower bounds underestimate the true
capacity by approximately 9%.

5.3. Bearing capacity of a rough footing on a ®ssured material

Consider a rough strip rigid footing resting on the surface of a ®ssured material with the angles of
friction f � 308 and d � f=2. Tables 5 and 6 give the bearing capacity of the rough footing on the
®ssured materials with unit weight and without unit weight, respectively. Solutions obtained
independently using the method of characteristics are also shown in these tables. The upper and lower
bound solutions were computed using Mesh 2 (Fig. 11) and Mesh 4 (Fig. 13), respectively. In both
cases, J = 96.

Tables 5 and 6 show that, as in the case of the smooth footings, the lower bounds are generally much
more accurate than the upper bounds. The results for the material with unit weight are less accurate
than the results for the weightless material when each is compared with the appropriate results obtained
by the method of characteristics. The results also show that, for the material with unit weight, the upper
bounds overestimate the true capacity by approximately 30% and the lower bounds underestimate the

Table 5

Bearing capacity of rough footing with unit weight, gB=c � 1

Material Lower

bound

Characteristics

solution

Upper

bound

Vertically ®ssured 33.415 34.5294 44.975

Horizontally ®ssured 32.657 36.5480 44.996

Vertically and horizontally ®ssured 25.992 28.7688 36.471

Table 6

Bearing capacity of rough footing without unit weight, gB=c � 0

Material Lower

bound

Characteristics

solution

Upper

bound

Vertically ®ssured 22.752 23.4323 28.965

Horizontally ®ssured 22.716 23.4323 28.903

Vertically and horizontally ®ssured 19.055 19.7589 21.711

X. Zheng et al. / International Journal of Solids and Structures 37 (2000) 1211±1243 1231



true capacity by approximately 11%. As indicated previously, the level of accuracy can be improved by
selecting a ®ner mesh and a large number of linear segments to approximate the failure surface.

6. Conclusion

Formulations for the upper bound and lower bound limit analysis of ®ssured materials have been
presented. The numerical results indicate that both upper and lower bound methods are su�ciently
accurate for practically calculations, and may be used in tandem with each other to provide useful
bounds on the exact collapse load. For weightless ®ssured materials, Table 1 shows that the error in the
upper bound is of the order of 7% for the ®ne upper bound mesh and J = 96. Table 2 shows that the
error in the lower bound is also of the order of 7% for the ®ne lower bound mesh and J = 96. Tables 1
and 2 indicate generally, that by increasing the number of planes in the failure surface or re®ning the
meshes, the accuracy of the solutions will be raised. The results in Tables 3±6 for the cohesive-frictional
material with unit weight indicate that, although the collapse predictions obtained using the given mesh
and linearised failure functions are less accurate than those for the weightless materials, they are still
su�ciently precise for practical applications. Hence, the upper bound and the lower bound methods
presented in this paper are considered to be useful practical methods for analysing the bearing capacity
of ®ssured materials.
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Appendix A: shape functions

In order to formulate the upper and lower bound problems as linear programming problems, it is
necessary to use linear shape functions to approximate the non-linear ®eld quantities in the problem. To
achieve this, assume that the considered region is modelled by the triangular elements under conditions

Fig. A1. Traingular element used in limit analysis.
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of plane strain and the coordinates of the three vertices of a triangle are given by �x1, y1�, �x2, y2� and
�x3, y3�, as shown in Fig. A1. The linear shape functions can then be de®ned as follows:

N1 � 1

2A

��x2y3 ÿ x3y2� � y23x� x32y
	
,

N2 � 1

2A

��x3y1 ÿ x1y3� � y31x� x13y
	
,

N3 � 1

2A

��x1y2 ÿ x2y1� � y12x� x21y
	
, �A1�

where

x32 � x3 ÿ x2, y23 � y2 ÿ y3,

x13 � x1 ÿ x3, y23 � y2 ÿ y3,

x21 � x2 ÿ x1, y12 � y1 ÿ y2,

and

A � 1

2
jx13y23 ÿ x32y31 j

is the element area.

Appendix B: failure surface

Failure
A typical deposit of ®ssured material is shown schematically in Fig. 1. It consists of two sets of

parallel and equally spaced ®ssures separating blocks of the matrix material. For conditions of plane
strain in the x±y plane, failure of a perfectly plastic material is usually written in the form:

f�sxx, syy, sxy � � 0 �B1�

where sxx, syy, sxy denote the Cartesian stress components and where the usual geomechanics
convention of regarding compressive stresses as positive is adopted.

It is convenient to introduce an alternative set of variables:

X � 1

2
�sxx ÿ syy � � R cos 2O

Y � sxy � R sin 2O

p � 1

2
�sxx � syy � �B2�
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where it will be recognised that p is the mean stress, R is the radius of the Mohr circle and O is the
angle between the major principal stress direction and the x-axis.

The ®ssure±matrix composite may fail by either the development of plastic failure in the matrix
blocks or by shear failure along the ®ssures. The failure surface for a geo-material weakened by a single
set of ®ssures, can be de®ned by (Zheng and Booker, 1997)

F�p, O, R� � f0 f1 f2 � 0 �B3�
where

f0 � Rÿ sin f�p� q�,

f1 � Rÿ sin d�p� qf �
sin �2Oÿ 2x� d� ,

f2 � R� sin d�p� qf �
sin �2Oÿ 2x� d� , �B4�

where

q � c cot f,

qf � cf cot d,

and where c and cf are the cohesion of the matrix and the ®ssures, respectively. f is the angle of internal
friction of the matrix and d is the angle of friction on the ®ssures. Attention is restricted to materials for
which dEf and qfEq.

Clearly, failure on the ®ssures is represented by a pair of planes, and failure in the ®ssure±matrix
composite can occur either through failure in the matrix or failure on the ®ssures. Thus, the failure
condition will be bounded by both the cone shown in Fig. B1 (corresponding to failure in the matrix)

Fig. B1. Failure surface in the matrix.
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and by the pair of planes given by f1 and f2 in eqn (B4). This leads to the composite failure surface
shown in Fig. B2 in X, Y, p stress space, and Fig. B3 which shows a section in the X, Y stress space.
Similarly, if a geo-material is weakened by two sets of ®ssures, its failure surface is de®ned by

f�p, O, R� � f0 f1 f2 f3 f4 � 0 �B5�
where f0, f1, f2 are given in eqn (B4) and f3, f4 are de®ned by

f3 � R� sin d�p� qf �
sin �2Oÿ 2x� d� ,

Fig. B2. Composite failure surface in X, Y, p stress space �x � 0�.

Fig. B3. Contours of the composite failure surface in X, Y stress space �x � 0�.
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f4 � Rÿ sin d�p� qf �
sin �2Oÿ 2xÿ d� , �B6�

Let

sin a � sin d
sin f

,

so that for this kind of material, the failure surface has two di�erent shapes in X, Y stress space in Figs.
B4 and B5.

Approximation of failure surface
In order to formulate the problem as a linear programming problem, it is necessary to express the

above failure conditions as a number of linear functions having the form

Fig. B4. Failure surface for a material with two sets of ®ssures and aEp=2ÿ d.

Fig. B5. Failure surface for a material with two sets of ®ssures and aep=2ÿ d.
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Axxsxx � Ayysyy � 2AxysxyEG: �B7�
This form is chosen because if the coordinate axes are transformed so that�

sss sst
sst stt

�
�
�

cos y sin y
ÿsin y cos y

��
sxx sxy
sxy syy

��
cos y ÿsin y
sin y cos y

�
then the linear function (B7) becomes

Asssss � Attstt � 2AstsstEG

where�
Ass Ast

Ast Att

�
�
�

cos y sin y
ÿsin y cos y

��
Axx Axy

Axy Ayy

��
cos y ÿsin y
sin y cos y

�
and where y is the angle between the x-axis and the s-axis.

It will be assumed that a zero stress state is always safe and thus, that Ge0. A key assumption in the
derivation of the limit theorem is that the failure surface is convex and so the approximating failure
surface must also be convex.

Failure of ®ssures

Single set of ®ssures. For a material with a single set of ®ssures, as de®ned by (B3), failure on the ®ssures
corresponds to two linear failure functions, viz

A�1�xxsxx � A�1�yy syy � 2A�1�xy sxyEG �1�

A�2�xxsxx � A�2�yy syy � 2A�2�xy sxyEG �2� �B8�

with

A�1�xx � ÿ
1

sin a

�
sin �2x� d� � sin d

�
,

A�1�yy �
1

sin a

�
sin �2x� d� ÿ sin d

�
,

A�1�xy �
1

sin a
cos �2x� d�,

G �1� � 2cf cos d,

A�2�xx �
1

sin a

�
sin �2xÿ d� ÿ sin d

�
,

A�2�yy � ÿ
1

sin a

�
sin �2xÿ d� � sin d

�
,

A�2�xy � ÿ
1

sin a
cos �2xÿ d�,
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G �2� � 2cf cos d: �B9�

These failure surfaces are already in a linear form and need no approximation.

Two sets of ®ssures. For a material with two sets of ®ssures, as de®ned in (B5), failure on the ®ssures
corresponds to four linear failure functions:

A�i�xxsxx � A�i�yysyy � 2A�i�xysxyEG �i�, i � 1, 2, 3, 4,

where A�i �xx, A
�i �
yy , A

�i �
xy, G

�i �, �i � 1, 2� are de®ned by (B9), and A�i �xx, A
�i �
yy , A

�i �
xy, G

i �i � 3, 4� are de®ned by:

A�3�xx �
1

sin a

�
sin �2x� d� ÿ sin d

�
,

A�3�yy � ÿ
1

sin a

�
sin �2x� d� � sin d

�
,

A�3�xy � ÿ
1

sin a
cos �2x� d�,

G �3� � 2cf cos d,

A�4�xx � ÿ
1

sin a

�
sin �2xÿ d� � sin d

�
,

A�4�yy �
1

sin a

�
sin �2xÿ d� ÿ sin d

�
,

A�4�xy �
1

sin a
cos �2xÿ d�,

G �4� � 2cf cos d: �B10�

Again, these failure surfaces are already in a linear form and need no approximation.

Failure in the material matrix

For failure in the matrix, there are two kinds of approximations: an interior and an exterior
approximation.

Interior approximation. In examining lower bound problems, the approximation of the failure surface
needs to be interior. Suppose that this approximation consists of a number of triangular faces which are
convex and contain the origin. If the three vertices of the triangle j (which are assumed to be non-
collinear) are �s�1�xx , s�1�yy , s�1�xy �, �s�2�xx , s�2�yy , s�2�xy �, �s�3�xx , s�3�yy , s�3�xy �, then the failure surface has the equation:
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������������

sxx syy sxy 1

s�1�xx s�1�yy s�1�xy 1

s�2�xx s�2�yy s�2�xy 1

s�3�xx s�3�yy s�3�xy 1

������������
� A�j�xxsxx � A�j�yysyy � 2A�j�xysxy ÿ G �j� � 0,

where

A�j�xx �

���������
s�1�yy s�1�xy 1

s�2�yy s�2�xy 1

s�3�yy s�3�xy 1

���������,

A�j�yy �

���������
s�1�xy s�1�xx 1

s�2�xy s�2�xx 1

s�3�xy s�3�xx 1

���������,

2A�j�xy �

���������
s�1�xx s�1�yy 1

s�2�xx s�2�yy 1

s�3�xx s�3�yy 1

���������,

G �j� �

���������
s�1�xx s�1�yy s�1�xy

s�2�xx s�2�yy s�2�xy

s�3�xx s�3�yy s�3�xy

���������:
For a Mohr±Coulomb material, it is convenient to introduce a Mohr representation of the stress, i.e.

s�1�xx � p�1� � R�1� cos 2O�1�,

s�1�yy � p�1� ÿ R�1� cos 2O�1�,

s�1�xy � R�1� sin 2O�1�,

R�1� � p�1�sin f� c cos f,

s�2�xx � p�2� � R�2� cos 2O�2�,

s�2�yy � p�2� ÿ R�2� cos 2O�2�,
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s�2�xy � R�2� sin 2O�2�,

R�2� � p�2� sin f� c cos f,

s�3�xx � ÿc cos f,

s�3�yy � ÿc cos f,

s�3�xy � 0:

By choosing the special points on the surface, viz assume that p�1� � p�2� � p, then

A�j�xx �
cos

ÿ
O�1� � O�2�

�
cos

ÿ
O�1� ÿ O�2�

� ÿ sin f,

A�j�yy � ÿ
cos

ÿ
O�1� � O�2�

�
cos

ÿ
O�1� ÿ O�2�

� ÿ sin f,

A�j�xy �
sin

ÿ
O�1� � O�2�

�
cos

ÿ
O�1� ÿ O�2�

� ,
G �j� � 2c cos f, j � 1,2, . . . , J, �B11�

where J is the number of the triangles to approximate the Mohr±Coulomb failure surface.

Exterior approximation. For the upper bound theorem, it is necessary to employ an exterior approxi-
mation. This can be done by selecting a number of sample points on the surface and determining their
tangential planes. Thus, if �s�i �xx, s�i �yy , s�i �xy� is such a sample point, then its tangential plane is de®ned by

A�i�xxsxx � A�i�yysyy � 2A�i�xysxy ÿ G �i� � 0

where

A�i�xx �
@

@sxx
f
�
sxx � s�i�xx, syy � s�i�yy, sxy � s�i�xy

�
,

A�i�yy �
@

@syy
f
�
sxx � s�i�xx, syy � s�i�yy, sxy � s�i�xy

�
,

2A�i�xy �
@

@sxy
f
�
sxx � s�i�xx, syy � s�i�yy, sxy � s�i�xy

�
,
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G � A�i�xxs
�i�
xx � A�i�yys

�i�
yy � 2A�i�xys

�i�
xy:

For a Mohr±Coulomb material, it is easy to ®nd that

A�i�xx � cos 2O�i� ÿ sin f,

A�i�yy � ÿcos 2O�i� ÿ sin f,

A�i�xy � sin 2O�i�,

G � 2c cos f, j � 1, 2, . . . , J �B12�
where J is the number of the sample points on the failure surface.

Appendix C: velocity discontinuity

The velocity discontinuity multiplier _k is introduced as a new feature in the upper bound formulation.
Consider a plastic material deforming in plane strain and obeying a failure criterion, eqn (1), and an
associated ¯ow rule, eqn (9). The region shown in Fig. C1 includes an intense distortion in the deformation
®eld.

As the thickness z 4 0, a velocity discontinuity may develop. In such a case it would be found that
�@u=@y�41 and �@v=@y� 41, and @u=@x, @v=@x are bounded when z 4 0. It can thus be seen that
_l 41 and �@f=@sxx� 4 0. (Because f is smooth, @f=@sij are bounded.) Now integrating through the
thickness of the layer, it is found that

Du � D_l
@ f

@syy
, Du � D_l

@ f

@sxy
, 0 � D_l

@f

@sxx
, �C1�

where

D_l � _k �
�z
0

_l dye0, Du �
�z
0

@u

@y
dy, Du �

�z
0

@u
@y

dy,

and thus,

Fig. C1. Intensive distortion zone with thickness z.
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Du
Du
� @ f=@syy
@f=@sxy

where z is the thickness of the layer. The quantity _k is called the plastic discontinuity multiplier. The
reason for this nomenclature will emerge as the quantity is developed when a discontinuity appears.

On such a velocity discontinuity we have

f�sxx, syy, sxy � � 0,
@ f

@sxx
�sxx, syy, sxy � � 0: �C2�

When a discontinuity is parallel to the x-axis the failure surface is independent of sxx and the
discontinuities only appear at the points in which (C2) holds. Therefore, for the purpose of calculation,
the failure surface can be replaced by its tangential planes at the stress state being considered. These
tangential planes are:

f1 � sxy ÿ syy tan fÿ c � 0,

f2 � ÿsxy ÿ syy tan fÿ c � 0: �C3�

As a consequence, the ¯ow rule at the discontinuity can be rewritten as

_exx � _l1
@ f1
@sxx

� _l2
@f2
@sxx

,

_eyy � _l1
@f1
@syy
� _l2

@f2
@syy

,

_gxy � _l1
@f1
@sxy

� _l2
@f2
@sxy

:

Hence, eqn (C1) can be written as

0 � _k1
@ f1
@sxx

� _k2
@f2
@sxx

,

Du � _k1
@ f1
@syy
� _k2

@f2
@syy

� ÿ� _k1 ÿ _k2� tan f,

Du � _k1
@ f1
@sxy

� _k2
@f2
@sxy

� � _k1 ÿ _k2�, �C4�

and the power dissipation in the discontinuous region is given by

Pd � lim
z40

�z
0

�
l

�sxx_exx � syy_eyy � sxy _gxy� dx dy �
�
l

c� _k � _k � dl �C5�

where l is the length of the discontinuity, and the constraint equations at the discontinuity are given by

Du � ÿ� _k1 � _k2� tan f,

Du � � _k1 ÿ _k2�: �C6�
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